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=w A mixture with a very large number of components approaches the condition of a continuous

mixture in which the components are not distinguished by a discrete index but by a continuous
variable. Such a mixture can be described by distributions of concentration and is capable of
sustaining an infinite number of reactions. Polymerization and cracking reactions can be treated
in this way and there may be applications to the very complex processes of biology. The aim of this
paper is to lay the foundations for the stoicheiometry, thermodynamics and kinetics of such
reactions and to outline several techniques for solving the resulting integro-differential equations,
Attention is also paid to the problem of fitting the parameters of such a model to experimental data.
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352 R. ARIS AND G. R. GAVALAS

INTRODUCTORY REMARKS AND NOTATION

We wish in this paper to lay the foundation for a theory of reactions in mixtures with
infinitely many components. This idea goes back to the work of DeDonder (1931),T who
outlined the thermodynamics of mixtures with infinitely many components and phases in
which an infinite number of reactions could take place. We shall only be concerned with
one phase, but it will become clear that once an infinity of components has been introduced
an infinity of reactions must also be considered. This leads to integro-differential equations
which are entirely analogous to the differential equations of discrete reactions between
discrete species.

The first paragraph is concerned with the definition of a continuous mixture and refers
to other applications of this notion that have been made. The three paragraphs following
introduce the stoicheiometry, thermodynamics and kinetics of continuous reactions, and it
has seemed useful and appropriate to collect some results from elementary functional
analysis in §3(a). In §5 we explore the application of these ideas to some cases where the
solution of the equations is easier to obtain than in the general case, but even in the linear
case the techniques involved are not entirely routine. Some of these applications, such as
that to polymerization, have already been proved and others hold promise for the study of
reactions in very complex systems, such as those that arise in biological contexts. Two of
the more difficult problems, those of optimality and stability, are adumbrated in §6.
Finally since, as Courant remarks (1964), flights of abstraction must pay attention to the
re-entry problem as well as to take-off, we consider and illustrate the problem of fitting the
continuous reaction model to experimental data. A variety of methods is used for the
solution of the equations that arise: in §4 (a) an explicit solution is obtained; in §4 (5)
iterated kernels and resolvent kernels in closed form are used; in §4 (¢) a degenerate kernel
with a single term allows explicit solution; the differential reactions in §34 (d) and 4 (¢)
give rise to partial differential equations; and in § 7 (4) a finite difference method is used
to solve the equations numerically.

Notation

The following are the principal symbols used in this paper. Some with slightly restricted
use are given with paragraph number and ephemeral notation has been omitted. This
should cause no confusion as it will be evident that such usages as F, G, f and g for func-
tionals and functions, 4 and K for operators in §5 (¢) and 7}, etc., for certain integrals in
§5(b), are of purely local bearing.

A sth discrete species

A(x) continuous species of index x

A(x), B(x) paraffin and olefins species respectively (§ 5¢)

o (w) reaction aflinity distribution

A(w), A" (w) Arrhenius pre-exponential factor distribution (§4)
a, b lower and upper bounds of x

1 We are indebted to Professor R. Defay for drawing our attention to this reference. The work reported
here had been completed when we learned of DeDonder’s discussion, but little overlap and no conflict of
material is found.
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THEORY OF REACTIONS IN CONTINUOUS MIXTURES 353

b -
f ¢(x) dx, total molar concentration
a

heat capacity of mixture

lower and upper bounds of w

molar concentration of 4;, N,/V

molar concentration distribution, N(x)/V
initial concentration distribution

feed concentration distribution
equilibrium concentration distribution
Laplace transform of ¢(x, ¢)

(%)) any extensive property (§3)
E=Ey(Z,N,x) corresponding intensive property (§3)
w), &' (w) activation energy distributions (8§ 4)
T,P,N(x)) Gibbs free energy

(%)) enthalpy

partial molal enthalpy distribution
—AH(w)/C,

equilibrium constant and its pre-exponential factor (§3(d))
Kl ) o () [c* ()} (§5 (a))
monomolecular reaction rate kernel
differential reaction rate (§5(d))
iterated kernel (§5(5))

mass of A, present

mass distribution

molecular weight of 4,

molecular weight distribution

b
total number of moles = J N(x)dx

number of moles of 4, present

distribution of number of moles

¢(x)/C = N(x)/N, mole fraction distribution
pressure

partial pressure distribution

polymer concentration distributions (§ 5 (¢))
heat removal rate (§6 (b))

olefin concentration distribution (§5(c))
gas constant

index for discrete reactions

P, T c(x),w) reaction rate

PHILOSOPHICAL
TRANSACTIONS
OF

entropy

number of discrete species

index for discrete species

o+1ir, Laplace transform variable (§5 (b))
temperature

43-2
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354 R. ARIS AND G. R. GAVALAS

1, feed temperature

¢ time

US,V,N(x)) internal energy

v volume

v(x', x) paraffin cracking kernel (§5 (¢))

w : index for continuous reactions

w(x', x) olefin cracking kernel (§5 (¢))

X index for continuous species

z;,z(%, 1) experimental data (§7)

Z thermodynamic variables (§ 3)

Oy, Oy stoicheiometric coeflicient of 4, (in rth reaction)
a(x) stoicheiometric coeflicient distribution for a single reaction

a(w,x), a(w,w’,x) stoicheiometric coefficient distributions in continua of reactions

a(w) fz a(w, x) dx

flw,x),y(w, x) order of reaction distributions

(o, o, 1) fe* ()}

AG(w) standard free energy of reaction distribution

AH(w) heat of reaction distribution

{(t) incompatibility variable (§6(5))

n(x,t,0) adjoint function (§6 (a))

0 duration of reaction (§ 6 (a)), or holding time (§6 ())

k(%) fb k(x,u) du

A eigenvalue

K chemical potential of 4,

Hu(x) chemical potential distribution

v, multiplier in definition of independence of reactions (§ 2)

v(w),v(w,w") multiplying distributions in definition of independence of continuous
reactions (§2)

£ & extent of reaction, or of rth reaction

E(w,t),E(w,w’,t)  extent distribution functions for continuous reactions

P, density of 4, = M|V

p(x) density distribution of A(x)

1. MIXTURES

In the conventional mixture of chemical substances it is possible to distinguish a finite
number of distinct chemical species. These may be denoted by A, where s is an integer
1 < s < S. In rare cases it may be possible to express the chemical formulae of the species
as functions of s, as with contiguous members of an homologous series (e.g. CH,,,,), but
in general the 4, suffice as symbols and their chemical meaning must be recorded in a table.
In such a mixture, which will be referred to as a discrete mixture when necessary, we can
speak of the mass, M,, of 4, being present in any particular region, and, if V" be the volume
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of that region, of 4, having a mean mass concentration of p, = M,/V. Similarly, if m, is the
molecular weight of 4, the mass M, will correspond to N, = M,[/m  moles of A; and we can
define a molar concentration by ¢, = N,/V.

All these notions have immediate analogues if we allow ourselves to consider a mixture
with infinitely many components. The ‘species’ present in such a mixture may be denoted
by A(x), where x is a real variable a < x < b. It is no longer possible to speak of the mass of
4 (x) present, but only of the mass distribution{ function M (x), which is such that M (x) dx
is the mass of the cut of species 4(x"), ¥ < x" < x+dx, present. If M (x) is a non-negative
piecewise continuous function of x in the open interval (a, b) we shall speak of a continuous
mixture (a, ) with this mass distribution function. If m(x) is the molecular weight associ-
ated with 4(x) then N(x) = M(x)/m(x) is a molar distribution function; m(x) > 0 if the
species A(x) exists so that the function N(x) is defined and non-negative. Similarly, mass
and molar concentration distributions may be defined by p(x) = M (x)/V and ¢(x) = N(x)/V
respectively.

Such a concept is not as far fetched as it may at first appear. In practice the chemist may
have to deal with extremely complex mixtures (e.g. of hydrocarbons) of which no precise
analysis is possible. In such a case he often has recourse to this type of description and
speaks of the fraction boiling between temperatures x and x- Jx, or having a retention time
on the chromatographic column of x to x+ dx. Indeed the analytical apparatus may actually
produce a record of ¢(x) or some function of it as a continuous curve. The fact that the
separation theory of such mixtures can be carried over from the discrete case has been known
for some time (Bowman 1949) and a full discussion of their distillation is given by Acrivos &
Amundson (1955). Harbert (1947) and Bowman (1951) have shown how the distribution
functions may be obtained from experimental data when x is a variable related to the
vapour pressure. The justification for this treatment of separation processes lies in the fact
that a rather fine gradation of physical properties is found in such complex mixtures. If
we are to study the theory of chemical reaction in such mixtures we must assume that there
is a similarity or gradation of chemical properties. But this is often the case, for complex
systems are rarely without some ordering principle. In polymerization or cracking there is
an obvious ordering property and in complex enzyme systems there may be a natural
sequencing by function. From a mathematical point of view reactions in continuous
mixtures are worth considering as the limiting case and it may be hoped that the behaviour
that we observe may have some light to shed on that of very large systems of reactions.

If we admit generalized functions we may discuss mixtures with both continuous and
discrete species. Thus, if we use the so-called Dirac delta function, the expression

M)+ 3 Md(r—3) (1

includes both the mass distribution function for the continuous part of the mixture and the
masses of the discrete species, where x, is the value of the real variable x that should be
associated with the species 4;. The generalized molar distribution function is

N+ 3 No(r—) = (M)} + 3 (M )m}d(x—x) @

1 The term ‘distribution’ will be reserved for such functions and the class of functions called ‘distribu-
tions’ by L. Schwartz will be referred to as ‘generalized functions’.
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356 R. ARIS AND G. R. GAVALAS

and, dividing by the volume, we can define mass and molar concentration distributions:

N

p(x)+3§lps3(x~xs)> (3>
c(x)Jél 6 8(x—x). (4)

If x has the range (a, 4) and this includes all the points x, then the total number of moles is
N= | " N(x) dx+§l . (5)

Another important measure of concentration is the mole fraction distribution
)+ 2 n,d(x—x) = (N[N} 3 (NN }Ox—,). (6)

This clearly has the property that

fbn(x) dx+ é n, = 1. (7)

a

By insisting that all functions should remain integrable we could, if we wished, adopt a = 0
as a standard lower limit and let 5—co. It will be convenient to let these equations stand
for reference with both continuous and discrete parts, but in what follows we shall be
largely concerned with the continuous part only. Since all quantities of physical interest
will involve integrals of the distribution functions we could have started from cumulative
distribution functions like

Y = [ {y) + 2y, 00 =)

b
and interpret such integrals as f f(x)dY(x) as Riemann—Stieltjes integrals.

2. REAcTIONS
A single reaction between the set of discrete species 4, (s = 1,2, ...,.5) may be denoted by

S
gl asAs =0, (8)

where the real numbers o, are known as stoicheiometric coefficients. The coeflicient o is
proportional to the number of molecules of 4 taking part in the reaction and may be taken
to be positive if the species is a product of the reaction. Simultaneous reactions may be
denoted by

O

| i

e, A, =0 (r=1,2,...,R). (9)

s=1

Such a reaction is only proper if it is balanced in the atomic species and this implies that
s
Zloc,.sms:() (r=1,2,...,R). (10)
o=

All this suggests that the mathematical foundations of stoicheiometry lie in the theory of
linear vector spaces, an idea which has been explored elsewhere (Aris 1965).
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THEORY OF REACTIONS IN CONTINUOUS MIXTURES 357
The analogue for continuous mixtures would seem to be the reaction
b
f a(x) A(x) dx = 0, (11)
where «(x) has the property that
b
f a(x) m(x) dx = 0. (12)

We shall find, however, that we need to consider more than just a single reaction.
Simultaneous, discrete reactions can be written

fiocr(x)A(x) dte=0 (r=12,...,R) (13)

b
with f o () mx)dr =0 (r=1,2,...,R). (14)
Such reactions are independent if the only set of multipliers v, such that

R
2r0(x) =0 (e<x<1b) (15)
1

is the trivial set v, = 0.

In the discrete mixture an extent of reaction §(¢) or §,(¢) may be defined and the change
in concentration by reaction is given by

Ao, =6 0)=6,(0) = a£®) or 3 £, (16)

The stoicheiometric coefficient function for the continuous mixture can be used in the
same way and

Ac(x) = c(x,t) —c(x,0) = a(x)E(¢) or r; a,(x)&,(t). (17)

The derivatives d§/d¢ and d£,/d¢ are respectively the rate of the single reaction and the rate
of the rth reaction of the set.

The question now arises, Can we have a continuum of reactions? Let w be a continuous
variable in the interval (¢,d) and «(w, x) a piecewise continuous function such that

f ’ (w, %) m(x) dx — 0. (18)

Then fboc(w,x)A(x) dx=0 (¢c<w<d), (19)

is a continuum of reactions over the interval (¢, d). With the elementary interval (w, w- dw)
is associated an extent £(w, #) dw and

Ac(x) = ¢(x,t) —c¢(x, 0) = fjoc(w, x) E(w, t) dw. (20)

§(w, ) is a distribution of extent in reaction space. If we allow a(w,x) to be a generalized
function and associate discrete reactions with discrete points w, of (¢,d), then we can
subsume the general discrete reaction under this formalism. Thus let

(w X) z Z OCS(S(U)-—U),.) 3(%*-.963) (21)

r=1 s=
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and the reaction continuum will be

Mo
M

a, A0 (w—w,) =0,

rs

I

,}
I

s=1 1

which localizes the 7th reaction at the point w,. The independence condition (15) becomes
the condition that the only solution v(w) of

fdv(w) a(w, %) dw =0 (a<x<b), (22)

is the trivial function »(w) = 0 (¢ < w < d). This condition is necessary or the extent distri-
bution function could not be defined, since if there is a nontrivial v(w), the function
E(w,t) +-v(w) 5(t) would give the same concentration changes as £(w, ¢) for any 7(¢).

The continuum of reactions can be extended to a larger number of dimensions and we
shall have occasion to consider the two-dimensional continuum

f ’ lw, w', %) A(x) dx — 0, (23)

where the point (w, w’) liesin a domain D of the w, w’ plane. Then for the reaction continuum
to be proper

b
f a(w,w’,x)m(x)dx =0 ((w,w’) in D) (24)
and there are no nontrivial solutions of
Jj v(w,w) a(w,w’,x)dwdw =0 (a<x<bh). (25)
D
Then an extent distribution function can be defined in D such that
Ac(x) = f f 2w, ', %) E(w, w") dw du'. (26)
D
As examples we may consider the generalized monomolecular reaction
Aw)—Aw) =0 (a<w<w <b), (27)
for which a(w,w',x) = 0(x—w)—d(x—w'). (28)
b
For this Ac(x) = f {E(x,w") dw’ —&(w, x) dw}. (29)
The cracking reaction ’
Aw)+4Aw")—A(w+w') =0 (@e<w<w <w+w <b), (30)
is given by a(w,w',x) =0(x—w)+d(x—w')—0(x—w—w"). (31)
b
Thus Ac(x) = f E(x,w") dw' +E(w, x) dw—E&(w, x—w) dw}. (32)

The discrete sequential reaction can be written 4,—4,_; = 0 and gives a limiting form
A(w) —A(w—0w) = 0 or symbolically A"(w) = dA(w)/dw = 0. This can be represented by

the generalized function a(w, %) = & (w—»x), (33)
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for which f&w—@A@ymzAmm:o. (34)
Then m@%:fﬁ@X@Hde:~ﬂ@. (35)

3. THERMODYNAMICS OF CONTINUOUS MIXTURES
There is no difficulty in applying the zero, first and second laws of thermodynamics to
continuous mixtures, but some points of interest arise in connexion with the calculation of
extensive properties and chemical equilibria. However, we shall need some elementary
results from functional analysis and it will be convenient to give them briefly here.

(@) Results from functional analysis
Consider a set U of a linear vector space V, whose typical member will be denoted by
u(x), a < x < b. A functional is a mapping from U into the reals; it may also depend on one
or more parameters of which it is an ordinary function. If the space V is normed and the
norm of u(x) is denoted by |u||, we can define differentiability of functionals. A functional
F(u) is differentiable at an interior point « of U, if for all 4 sufficiently small in norm

F(u-+h) = F(u)+dF(u, h) +R(u, b), (36)

where lim RT&’H@ = 0. The linear functional d#'(u, %) is called the Frechet differential of
Fand iznr;:ny cases it may be represented in the form
dn%m:ffmumm, (37)
where f(x) depends on z and x but not on . ifhen
S (%) = Fi(u; %) (38)

is called the functional derivative; it induces a mapping from ue U to dF(u, ), a linear
functional of 4. In current mathematical terminology this mapping is called the gradient
of the functional, but it will cause no difficulty here if we use the terms gradient and func-
tional derivative interchangeably. The Riesz representation theorem asserts that if
ue L,[a,b] and F is differentiable then representation (37) obtains and F,(u;x)e L [a, b],
(1/p)+ (1/q¢) = 1. When the Frechet differential exists it may be calculated by
mw%m=:&%F@+4@]>, (39)
A=0
but the converse is not always true. The rules of differentiating a sum, product and function
of a functional are immediate extensions of the elementary ones. If F(u) = G(v) where
v(x) = H(u; x) is a functional of u depending parametrically on x then

b
Fifus ) = [ Gifvs ) Hyus 552) ds. (40)

Finally we notice that since
' dF(u, h) = [dF (u+AR)[dA] g

then dF(u+«h, h) = [dF (u+«h+2Ak) [dA] -
= dF(u-+«h)/dk. (41)

44 Vor. 260. A.
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Thus Futh)—F(u) fiF(u+Kfl)d

_ debeF;<u+Kh;x)k(x) dx

:jz [f (4-kh; x) di | da. (42)

(b) Extensive and intensive properties

An arbitrary extensive property of a continuous mixture will be denoted by E(Z; N(x)),
where Z denotes a pair of thermodynamic variables such as P, the pressure, and 7, the
temperature, is a linear functional of the molar density function N(x). Thus

E(Z;kN(x)) = «kE(Z; N(x)) (43)
and (k—1)E(Z; N(x)) = E(Z;kN(x)) —E(Z; N(x))
=dE(Z;N; (k—1) N)+o(k—1)
(k— IJN W(Z; N;x) det-o(k—1).
Hence dividing by (k—1) and letting x -1 we have
E(Z; N(x f N(x) E}(Z; N; %) dx. (44)

Thus the gradient E(Z;x) = Ey(Z; N;x) (45)

may be defined as the partial molal property. It is an intensive variable for replacing N(x)
by kN(x) in equation (44) shows that

Ey(Z;kN;x) = Ey(Z; Njx). (46)

In particular if Z is the pair of variables, P, the pressure and 7', the temperature and
E the Gibbs free energy of the system G(P, 7'; N(x)), we have a definition of the density of
chemical potential in the functional derivative

C(x) = Gy(P, T; N(x); ) = p(x) (47)
b
and G(P, T; N(x)) = f (%) N(x) dx. (48)
The calculation of other extensive properties proceeds similarly and in the usual thermo-
dynamic identities the discrete mixture term XN, E; is replaced by [6N(x) E(x) dx. For
example .
AU = TdS—PdV+ f (%) SN () dx, (49)
where N (x) is any differential perturbation of N(x). Similarly,

dG = —SAT+VdP+ f  4(x) 8N (x) dx. (50)
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(¢) Ideal gases and mixtures
The perfect gas is a fluid satisfying the equation of state

P = CRT, (51)

b
where C= f ¢(x) dx. (52)
If we let n(x) =¢(x)/C = N(x)/CV (53)
be the mole fraction distribution, the chemical potential in a continuous perfect gas may
be written 4(x) = 0(x) +RTIn P+ RTnn(x), (54)

where 4%(x) is independent of pressure. Thus

G(T,P; N(x)) = f” N(x) 10(x) dx+RTlnbe N(x) dx+RTfN(x) Inn(x) dx

- Vf %) dx++CVRTIn P+ VRTJ () In[c(x)/C]dx.  (55)
Since the free energy of one mole of pure ‘x’ is #°(x) + R T'In P, the last term

CVRTf %) Inn(x) dx

is the free energy of mixing.
For the ideal solution we write

#(x) = w* (x) +RTInn(x), (56)

where #*(x) may be a function of both 7" and P, and observe that (54) is also of this form.
In his work on affinity, referred to in our opening remarks, DeDonder (1931) discusses
the perfect gas at some length. He defines a partial pressure distribution

P(x) = Pn(x) =¢(x) RT

and carries out detailed computation of internal energy, entropy and affinity.

(d) Equilitbrium in continuous mixtures

Chemical equilibrium at a given temperature and pressure is attained when the Gibbs
free energy is a minimum. From equation (50) the condition for equilibrium is thus

| f " 4(x) N (x) dx = 0.

b
But if a single reaction f a(x) A(x)dx =0

is taking place, the perturbation § N(x) in N(x) will be proportional to a(x) for
ON(x) = VAc(x) = Va(x) €.

Thus the condition for equilibrium becomes

f ’ () () dx = 0.

a
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362 R. ARIS AND G. R. GAVALAS

For a perfect gas mixture we may define P(x) = Pn(x) to be the partial pressure density
function and with g(x) = u°(x) +R7 1n P(x) we have

b
RT f ) InP(x) dx — — J a(x) J0(x) d. (57)
4
For the ideal solution RT f x) Inn(x) dy = — f a(x) w* (x) dx. (58)
Equation (57) may be modified to give
RTf %) Ine(x) dx wwf (%) + RTIn RT) dx. (59)
The case of simultaneous reactions may be treated by considering the one dimensional
continuum of reactions b
f a(w, x) A(x) dx.
For this we have Vf 0 (w) a(w, x) dw

and hence the equilibrium condition

f ” dx f jdw SE (1) ae(uw, %) () — 0. (60)

It is clear that this implies a definite restriction on the function x(x) at equilibrium for by
the condition (22) we know that there is no possible 0¢(w) such that

f fag(w) (w, x) dw = 0

for all x. But writing the relation

f jag(w) dw f :a<w, %) p(x) dx = 0

and assertihg that this should hold for arbitrary displacements d§(w) from equilibrium,
implies that

fboc(w,x),u(x) dx = 0. (61)

a

This expresses the principle of microscopic reversibility or detailed balancing, that at
equilibrium each reaction of the set or continuum must be at equilibrium.
In the case of a perfect gas we may write

RTf:a(w, %) InP(x) dx = —fion(w, %) 40(x) dx = —AG°(w)

and f ’ a1, %) In P(x) dx = In K, (), (62)
where K, () = exp (—AGO(w)[RT).
Now d @) _ H(x)

dT7 T ~—  T%°
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where H(x) is the partial molal enthalpy distribution. Hence

d 1 d O(x
aT[anj,(w)] =—pdT oc(w, x)gé, )—dx
1 [t
= f w(w, %) H(x) dx
= AH(w)|RT™
Integrating we obtain K,(w) = K} (w) exp (—AH(w)/RT), (63)
where AH(w) is the distribution of the heat of reaction.
b

o () = — f (w, ) () d (64)

is the distribution of affinity in the reaction space.
As an example of equilibrium conditions consider the cracking reaction (30). Then

[t w0 ) dv = o) +tw") = o)

a

Uf w') _ -
(w+ ) ‘K (P) T> > )) (65)

where —RTInK,(w,w") = p®(w) +p*(w") —p*(w+w’). (66)

or

4. KINETICS OF CONTINUOUS REACTIONS
We shall not attempt to say too much in general terms about the kinetics of continuous
reactions, preferring to illustrate the matter with definite examples where some solutions
can be obtained. The subject may be treated using a one-dimensional continuum of
reactions, the changes to single or discrete reactions or to continua of more than one
dimension being trivial.
By the kinetics of a continuum of reactions

f”a(w,x)A(x) dx =0,

a

we mean an expression for the time derivative of (w) which is a function of the thermo-
dynamic variables and a functional of the concentration distribution, i.e.

E(w,t) =r(T, P;c(x);w). (67)

(A dot will be used to denote derivatives with respect to time.) By differentiating equation
(20) with respect to time we have

b(x, ) = f *a(w, ) (T, P;c(x); w) du, (68)

which provides an integro-differential equation for ¢(x,¢). Alternatively substituting from
(20) into (67) give an integro-differential equation for §(w,t), namely

E(w,t) =7 [T, P;c(x,0)+ ff a(w', x) §(w',t) dw'; w] . (69)
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An immediate generalization of the homogeneous kinetics of discrete mixtures is the
following kinetic expression

r(Tse(x);w) = exp{lnA(w)~——+f f(w, x) Inc(x) dx}

—exp {lnA’(w) - ;‘i () dx}. (70)

At equilibrium

[ 1,0~ 371 e(s) dx = Wn[Aw) 47 )]~ 2L ), (71)

But comparing this with the equilibrium relationships (62) and (63)

AH(w)

f :oc(w, %) In P(x) dx = In Kf (w) = i

we see that the two equations can differ only by one being a multiple of the other. Without
loss of generality we can take this multiplier to be one and set

7(w, %) —f(w, x) = a(w, %),
A(w)[4'(w) = K} (w) (RT) =,
AH(w) = E(w)—E' (), (72)
where a(w) :fboc(w, x) dx.
If ﬁ(wa x) = %{ [oc(w, x)l —cx(w, x)}:; (73)
Y(w, x) = 3{|a(w, )| +a(w, x)},

which clearly satisfies the first of the relations (72) then the kinetics are called simple.

It is clear that integro-differential equations of the form of (68) or (69) with » given by
(70) will be complex things at the best of times and we turn to some specific examples where
solutions may be obtained and actual reaction systems considered. It should be noted
however that such equations obtain only for the isothermal batch reaction of a continuous
mixture. For a completely mixed reactor of holding time ¢ and feed composition ¢,(x),
a mass balance over each elementary cut (x, x+dx) gives

06 (x,£) = ¢, (x) —c(x, £) + 0 f jcx(w, %) r(w) duw, (74)

which in the steady state reduces to an integral equation, though in general a nonlinear one.
If a reaction is carried out at constant enthalpy so that

ood
H:aifaH(x)c(x,t) dx = 0,

we have [J‘b 31;7¥)c(x,t) dx:l %%+fiﬁ(x)é(x,t) dx =0,

a
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since for a perfect gas the partial derivative with respect to pressure vanishes and the
functional derivative term vanishes because H(x) is an intensive quantity. But the term in
the first bracket is the specific heat at constant pressure of the mixture, C,, and substituting
from (68) into the second gives
b d d
f H(x)dx f a(w, %) 7 (w) dw = f AH (w) r(w) dw.
a c c

Hence for adiabatic operation at constant pressure

a7 _

= %‘; f jAH(w)r(w) dw. (75)

5. FIRST ORDER SYSTEMS

(a) Reversible monomolecular systems

A chemical reaction system is called monomolecular if the coupling between each pair
of species is by first order reaction only. Such systems have importance both in reality
(isomerization) and as approximations near equilibrium. They have been comprehensively
treated by Wei & Prater (1962) in the discrete case and it is shown that the three assump-
tions: (i) mass is conserved, (ii) no negative concentrations exist, (iii) the rate of change of
each concentration is a linear function of the concentrations, together with Brouwer’s fixed
point theorem, imply the existence of at least one equilibrium point.

In the continuous analogue we shall speak of a monomolecular system if in a closed
isothermal system the concentration distribution satisfies

é(x,t) = de(x,t), (76)

where 4 is a linear operator and the conditions (i) and (ii) obtain. By contrast to the discrete
case these conditions are not sufficient to ensure the existence of an equilibrium distribution
¢*(x) for which Ac* = 0, for Schauder’s fixed point theorem is not applicable and further
restrictions have to be introduced.

In the continuous system

fba(w,w',x)A(x)dxzo (a<w<w <b), (77)

a

we have the analogue of the discrete case 4,—4; = 0 if
a(w,w’, x) = 0(x—w)—8§(x—w"). (28 bis)

The system is monomolecular if
b b
£(x, 8) — ~f k(x, ) ¢(x, 1) du+j k(u, %) ¢(u, £) du
b
— k(%) e, 8) + f k(u, %) (1, £) du, (78)

where k(x) = fb k(x,u) du. (79)
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366 R. ARIS AND G. R. GAVALAS

We observe in passing that these kinetics are simple in the sense of equation (73). The
conditions (1) and (ii) are satisfied by this system. For, if the reactions are proper

fb a(w, w’, x) m(x) dx = 0,

a

namely m(w) = m(w’), and the total mass will be proportional to

b
j ¢(x,t) dx,

which is constant. Again, provided the initial distribution ¢(x, 0) is positive, ¢(x,¢) can never
become negative.
We may now prove the following theorem concerning the equilibrium distribution.

TueOREM 1. If the kernel k(x,u) is such that k(u,x)/x(x)eL,[D], D beng the rectangle
a<x, u<<b, then the system (718) has at least one equilibrium distribution.

Proof. Consider the inhomogeneous integral equation

; b k(u, x) h(x)
L ) o Y
¢ (x)+fa o e du =, (80)
The Fredholm alternative theorem states that: either equation (80) has a unique solution
for any A(x) such that %(x)/k(x) e Ly[a, b], or the homogeneous equation with 4 = 0 has
a nontrivial solution. But the first alternative cannot obtain, for multiplying by «(x) and

integrating, we see that b
f h(x)dx = 0.
a

It follows that the homogeneous equation has a nontrivial solution ¢*(x), for which
b
—k(x) c*(x) +f k(u, x) c*(u) du = 0. (81)

The time-independent solution of (78), ¢(x,¢) = ¢*(x), is the required equilibrium
distribution.

The questions of the uniqueness and stability of the equilibrium state require a more
detailed study of the spectrum of the operator. We shall not pursue this in the most general
case but assert the principle of microscopic reversibility, that, at equilibrium, each
elementary reaction must be in equilibrium. This means that not only is equation (81)

true but k(x, ) o* (x) = k(u, %) ¢* (1) (82)
for all x, % in D. This allows us to symmetrize the equation by the change of variable
(x,8) = o, ) [{e* (%)}, (83)
b
for which J(x,8) = —x(x) y(x,0)+ | K(x,u)y(u,t)du. (84)
c* () c*(aE
The kernel K1) = K(u,x) — k(u, %) {;*%x—)} — k(%) {ﬁ%}%} (85)

is now symmetric by virtue of equation (82).
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This leads us to

THEOREM 2. The principle of microscopic reversibility implies that the monomolecular system has
a unique, stable equilibrium distribution.

Proof. Multiply equation (84) by y(x,t) and integrate over the range (a,b) giving
thf 22(x, 1) dx — f 2(x, £) dx+f f K(x,u) (6, £) y(u,£) dxdu.  (86)
Now by (79) and (85) the first integral on the right hand side is
b b b b ¢* (u)
f V2(x,1) dxf k(x, u) du .—:f dxf duK(x, u){ s )} 2(x, 1) (87)
“au [ dxk lge
::fa ufa x K (u, x) {c*(u)} Y (u, t), (88)

by interchange of the ciphers x and u. But K(x,u) = K(u, x) so that writing equation (86),
first with (87) substituted and then with (88) substituted, and adding we have

%nyZ(x,t)dx:——fidxfidu[((x,u) [{E*E g} y(x,1) - {:%} (1 t):l. (89)

b
It follows that f 22(x, 1) d

is a constantly decreasing function and, since it cannot become negative nor can y(x, ) be
zero, almost everywhere its derivative must tend to zero or

{C*Eug} (s 6) 8}% (u,1)

for all x and % as t—co. But this implies that

¢(x,8) —c*(x) (90)
and the equilibrium state is unique.
Let K denote the operator

b
Kf= | Kixu)f(w) da, (91)
and A the operator with the added diagonal term

Af = —«(x) f (x) + Kf- (92)

Then the operator 4 is symmetric and must have real eigenvalues. But for any eigenvalue A
with corresponding eigenfunction f,

A= (ALN)(SS) <0,

since 2(4f, f) is the right hand side of equation (89) and so negative. This establishes the
theorem.

Before exploring the spectrum of the operator 4 further it will be useful to give an example
showing that other eigenvalues do exist, for most of the general theorems apply to

45 VoL. 260. A,
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completely continuous operators and 4 has a part, the diagonal operator x(x), which is not
completely continuous. Consider

ky) = By+3a%° (a=1,5=2), (93)
for which Af ==+ ) fw) 3 [ f(e) g3 [ (o) dy. (94)
The eigenvalue problem is Af = Af whence

S = %ﬁx+%ﬁx2}/{/l+x+x2}, (95)
where S = ’Cf(y) dy (k=1,2).

To find the f, we multiply (95) by x and &2 respectively and integrate to give the homo-
geneous algebraic system

2 12 x2 3 r2 x3
[§f 1 ATxmdx“l]“[‘ff TFagedr] =0

HF =t B et Al

The condition that this system should have a nontrivial solution is the vanishing of the
determinant of these equations, which gives

{AF(A) —1}{2AF (A) +2G(A) +1}+22G2(A) = 0, (96)
oy Ly 2541444207+ (74 24)p
where IF(A) = Vln 24 1 161 22 ,

146
6 =i TS yr,

v={1—4A}%

Equation (96) has a simple root at A = —1-4212 approximately, with corresponding
 venfuncti
Fisentnetion = {2-648x— 0-42857x2}/{x2 - ¥ — 1-4212).

In general it is to be expected that some non-degenerate kernels will induce transforma-
tions with an infinite number of eigenvalues. If «(x) is bounded above, any accumulation
point of the eigenvalues must lie in the range of —«(x). If x(x) is merely a measurable func-
tion then each accumulation point must be a point of density of —«(x). For if 4, and J;
(1t=1,2,3,...) are the eigenvalues and orthonormalized eigenfunctions of the bounded
operator 4, we have shown that the set of 1 is bounded above by zero. To obtain a lower
bound let & = max ¥(x), a < x < b, then

p— (Aflﬂf]) _ (Kj;’j;) -+ (Kj;’Jrj) ~ HKH—E
TS (/in5) g

where IIK]| = jb fbK(x,u) dx du.
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Since ke L,[ D], it follows from Fubini’s theorem that [K2(x, ) dy exists for almost all x and
by Bessel’s inequality

3 [[Keenf6)dy] = SQ+rWPGE < [Ky) dy

Thus, integrating with respect to x gives

s f{aj+,<(x)}2f;(x) dr < HKZ(x,y) drdy <oo

and for an infinite number of eigenvalues the series on the left converges. Hence
b
f k()2 fHx) dr >0 as j-soo. (97)

Now if A, is a limit point of the A; and is not in the range of —« (), we can bound A;+-«(x)
away from zero for all sufﬁcmntly large j. But this contradicts equation (97) and hence Ao
must belong to the range of —«(x).

The spectrum of 4 is not exhausted by the eigenvalues as we may see by introducing the
limit points of the spectrum. These are the points of the continuous spectrum, limit points
of the eigenvalues and eigenvalues of infinite multiplicity. Riesz & Nagy (1955) give the
theorem that the addition of a completely continuous operator to a bounded operator does
not change the set of limit points of the spectrum of the latter. Now 4f = —kf+ Kf and K is
completely continuous. But the spectrum of the bounded, diagonal operator —«f coincides
with the range of —«(x), which therefore belongs to the spectrum of A. This discussion may
be expressed in the form of

THEOREM 3. The spectrum of A = —«(x) + K consists of the range of —«(x) and of a bounded set
of eigenvalues with accumulation points, if any, in the range of —«k(x).

The whole of the foregoing discussion may be summarized in the following table which
compares the discrete and continuous systems.

TABLE 1. DISCRETE AND CONTINUOUS FIRST ORDER SYSTEMS

Assumptions Results for discrete systems Results for continuous systems

(i) conservation of mass The differential system The integro-differential equation
(ii) no negative concentrations ¢ = Ac é(x,t) = Ac
(iif) rates of change of concen- has at least one equilibrium may not have any equilibrium

trations linearly dependent point. points.

on concentration.
(1), (i), (iii) and (iv) each species The solutions of the equations The equation

connected to every other one (t) = —c,(t) E ku‘*'Z » J(t) é(x,8) = — (%) c(x,8) +

by reaction.

converge to an unlque equi- +fk(u, x)¢(u, 1) du
librium point; namely, A has
a simple zero cigenvalue and
the rest have negative real

parts.

has at least one equilibrium
point; information about its
uniqueness and stability are

incomplete.
(1), (i1), (iii), (iv) and (v) the At equilibrium At equilibrium
principle of microscopic k= otk o* (%) k(xyu) = o™ (u) k(u,x) ;
reversibility. J N
the nonzero elgenvalues of A the equation ¢ = Ac has an
are real and negative. unique, stable equilibrium

point. The spectrum of 4 is
given by theorem 3.

45-2
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(b) Solution by means of the Laplace transformation
The Laplace transformation can be used to solve the equation

£, ) = Ac = — k() ¢ (x, £) + f ’ (w, %) e(u, 1) du. (78 bis)

Let o(x,s) = f " este(x, 1) dt (98)

and ¢(x,0) = cy(x), (99)
then the equation transforms to

2(x,5) = ijf(x(zc) +s+i(x) fi/f(u, %) #(w, 5) du. (100)

The solution of this equation has the form

£(x, 9) "s+/< +f H(x, u, ) i% du, (101)

where H(x,u,s) is the resolvent of the kernel £(u, x) /{s+«(x)}. There are several possible
methods for the solution of this equation depending on the nature of the kernel. If £(u, x) is
degenerate and takes the form U(u) X(x) then the resolvent kernel can be obtained in closed
form. If the kinetics are represented by a Pincherle-Goursat kernel, i.e. of the form

i U,.(u) X, (x) the resolvent kernel may again be determined. A general kernel may some-
1

times be approximated by a Pincherle-Goursat kernel, or a formal solution obtained as
a series of iterated kernels. Let us look first at this last technique.
The resolvent kernel may be expressed as a series

Hx,1,5) = 3, (x,1,5), (102)
1

where ky(x,u,5) = k(u, x) [{s+x(x)},
b 103
k. (%, 1, 5) = f by (', $) Ky (i 1, 9) du’.} (103)

It follows that ¢(x, s) has a representation of the form
&(%,5) = S:fix() )+EQ (%, ), (104)

bk, (%, u,s) Co
where 2(%,9) ST xu du. (105)

Each of the functions @, (, s) has a logarlthrmc d1scont1nu1ty across the range of —«(x) and
is unbounded at the eigenvalues of the operators 4. To invert the transform we observe that,
by setting «, = « for symmetry, @, may be written in the form

”1:”0 k(”z:u)' k(um un 1)
o) = [ [ [, $+K 7ol

:fadul f du H/c (Upy gy H{S—I-K w)] co(u
= | du.. f du, Hk (g U _q) z l:{s+1< ) }/H {x(u,, _K(uk)}:l Co (1)
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Inverting term by term we have
c(x,t) = co(x) e W20, (%, ), (106)
where Q, (1, t) f dy .. f du Hk (s p—y) Z nexp(-—K(uk) ) . (107)
" | 11 felu,) (0}
m;k

The integrals must of course be given their Cauchy principal values and the convergence
of the series assured by direct test.

We shall show the technique of inverting the transform when the resolvent kernel is
given in closed form, by treating an elementary example. This will provide a concrete case
for studying the singularities of the kernel. Leta = 1, b = 2, k(x, u) = xu so that

k(x) = f:k(x, u) du = 3x.

2
Then é(x,8) — =3xc(x,t) —l—xf uc(u,t) du (108)
1
and ¢(x,0) = co(x).
Taking the Laplace transformation of this gives the equation
_ NG x f2 _
c(x,5) = s+§—x+s—}——g~x 1uc(u,s) du. (109)

Multiplying this by x and integrating gives an equation for

7o) = [ ue(u,5) da,

ucy(u s+3
namely g(s) *4f1s—|22>d /{ —2521n +2}. (110)
Thus substituting back in equation (109) gives
_ _6x) 9« J‘z ucy(u) du/: 2.1.5+3
() = i | 1—3s1nﬁfg}, (111)

and the most convenient way of inverting this is to invert g(s) and use the convolution
integral.

The singularities of g(s) are at s = 0 and along the line segment —3 < s < —3%. The
behaviour of the integral near this line segment is given by the Plemelj formulae (see, for
example, Muskhelishvili 1953). These formulae concern the Cauchy integral

s = [ T ay

to which we must advert for a moment. This is 2 holomorphic function everywhere except
on the line segment (—b, —a) where it is discontinuous, with one-sided limits

(112)

J*(o) = lim J(o+1ie) = fi—gy —inf(—oa),
e—>0+ a f (113)
J(¢) = lim J(o+ie) = J)dy inf(—o),

e—>0— a U“"?/
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where ¢ = %(s) and the asterisk denotes the Cauchy principal value. Similar formulae
can be developed for integrals of the form

— (S dy
I(s) = et (114)
Assuming first that «(y) is differentiable and monotonic we may change the variable of
integration by setting z=x(y), y=#(), (115)
k(b) > !
giving I(s) = f ( )J—[—(—IS(S—Z:?_%(—(Q dz
KB* £E()) 2
and (o) = f - f——(K%; ) 4z —inf (7(—0)) ¥ (—0)
b* f . "
= 7 B —iaf (e~ o)) 2 (o), (1160

with I~(¢) = I*(), the complex conjugate. If k(y) is differentiable but not monotonic then
the interval must be broken up into subintervals of monotonicity, giving rise to similar
formulae.

After this diversion we may return to our example for which the integral in the
numerator is

A
9f chrz du+ inoc,(—20) ' (117)
for —3 < ¢ < —3$. Similarly, the denominator approaches
oc+3| .
0{1———%0111 P il%ﬂa}, (118)

as s approaches the segment from above and below. Substituting from equations (117) and
(118) into equation (110) gives

9 . (4mo oc+3) .
E[LH (—g—) 60(—%(7)] [1—%UIH;ET%]~I%WU]

g (o) = 5 , (119)
o-+3
{1—%01n U+%} + 47252
with g=(¢) its complex conjugate, and [ is the Cauchy principal value of
[P ucy(u) du
_ f s (120)

Consider now the contour, C, of figure 1 which contains a simple pole of g(s) at s =0
and no other singularity.

1

2
— f g(s) estds = (residue of g(s) at s = 0) = 3 f ¢o(u) du. (121)
2m J ¢ 2),

But the integral around C is also the sum of the integrals along the segments 4’4, ABD,
D'B'A’, DE, E'D', EF and FE', which we will denote by I, I,, I, 1, I3, I, and Ij respec-
tively. As we let M and N tend to infinity and ¢-> 0 we obtain
1 y+io
Il%é;i f g(s)estds = g(t), (122)

y—ico
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I,—»0, I,~0, I;+13—0
and I,+1—~ f {g*(0) e”t—g~(0) e’} do
E {1—%0111 ﬁg}c (_%)_gf
o+ 3 otd
P e’tdo
s {1—%aln } +§mo?
2 uc
],—}—a’ln : —}—f uco ()
— § { ) 7’ _—«u —%0 tdg’
. {14—0 In } +72g'2
3 (2 ' ’ )
=5 | @) D@)yeiriar, (123)
B A
(1)
‘ w4
D ‘26 (13) E (14) F
DT @ B (I -3 0
-3
1 M
(13)
B -— 4/
- N Y-

Ficure 1. Contour for the inversion of g(s), equation (110).

where W (¢’) depends on ¢,(¢”) in the manner shown and the change of variable ¢’ = — %0
has been used to obtain the final form. Combining equations (121), (122) and (123) to give
g(t) and taking the convolution of this with e~¥, we have

2 2 2 e—to't _odxt Y (4"
— _ —$xt € € 0(0 ) ’
o(x,0) fl () du+ [co(x) fl (1) du] e +xf1 Toa Dy (124

2
As t—00, ¢(x,t) — f ¢o(#) du as it should.
1
If ¢y (x) = x7! we have W(¢") = ¢’~! and

2 e-to't__e-dxt g
1 o'—x  o'D(d")’

¢(x,t) =In2+ (%——ln 2) e“%x‘—}—xf

Similarly, with ¢;(x) = x we have W(¢') = —% and

3x 2 e 14 t_e—%xt do-

C(X, t) =34 (x—'ﬁ) it 2 o —x D((T') .
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374 R. ARIS AND G. R. GAVALAS

As an example of the use of the generalized Plemelj formulae we may mention

k(x,u) = isinxsinu, a=0, b=rm.
Here we obtain

¢o(%) n siny  _

o(x,s) = s+sinx 2(s+sinx)g(s)’
—y _ [T eo(u) sinu s 52 1+ (1—s2)%
where ga(s) = fo Snuts du/{2 e =) ln[ S ]} (125)

The logarithm is given its principal determination and the square root determined accord-
ingly. g(s) has singularities on —1 < s < 0. Denote by f(s) and I(s) the functions

fs) = 1In [li-(ls“—ﬂ)%] and I(s) = f To()sing g,

o sinu-+s
—g2)}
for which fE(o)=1n ‘ l—i(ia——al Fim,
oy [T eo(u)sinu ino T I
I (0)".[0 Snulo duj;(1~02)%[co( sin~! ) 4-co(m+sin~to)].
B
(I) ﬂ
i
D *;G (13) E (14) F/ 8
y
M
, (1)
B -
- N Y

Freure 2. Contour for the inversion of g(s), equation (125).

As 50, g(s) becomes unbounded but the singularity is not isolated. However, for
purposes of contour integration it has the same effect as a simple pole, for we may write

86) = 2 [ olw) dut-{(0) == [ ofw) ),

and the second term is bounded at s = 0. Also g(s) is O(|s|~2) as s —>oc0. With thisinformation
we can invert the transformation by integrating g(s) e*/2ni around the contour shown in
figure 2; the contour is broken up into eight parts and the notation, which is entirely
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THEORY OF REACTIONS IN CONTINUOUS MIXTURES 375

similar to the preceding case, should be clear from the figure. The integral along 4’4, I
becomes the inversion integral as M —>oc0 and as M and N->oo and ¢ and §—>0 we can
establish the following behaviour

Lgt), L0, L0, (L+I)=0, L>—> [ o) du,
0

-1

Gty [ roe (- 2 j;)%ﬁ(o)} do

+ [ (o) e‘”{%‘«— (ITU*;)% f‘(a):—l d(r:l

0

et sin o’

= [ W) o) +aolm—o Ny = TN -

where ¢ = —sin ¢’ and W(o') = 4m+tan ¢’ In{cot {0’}
D(d") = W?(¢')+n?tan?¢’,
J(o') = f T G)sing g,

o Sinu—sing’

Ir t=0

~ 08} /1-5
o 4
= =12
o 40
.2
®
g 04f
=}
Q
Q
=
=}
(8]
1 1 ]
0 i 3

species index, x

Ficure 3. The concentration distribution given by equation (126).

This leads, via the convolution integral to the solution

¢(x,1) :%f%”(;o(u) du-+ co(x)—%f:co(u) du:| e-tsinx

0

_lsinxf {00 +(;0 m—0 )} J 0‘) e’—lSIna' _e—tsmx
’ 0 D(U,) sinx—sin ¢’

For example, the initial distribution ¢(x) = sinx gives the solution

i e—tsina'_e—tsinx do’

¢(x,8) = 72_r+ (sinx—%) e‘tSinx—l—sinxf (126)

o sinx—sino’ D(o’)’
and figure 3 shows the distribution for five values of time.

46 VoL. 260. A.
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376 R. ARIS AND G. R. GAVALAS

(¢) Irreversible systems; cracking by direct fission

As an example of an irreversible system we shall consider the continuous analogue of the
cracking of a mixture of paraffins and olefins by direct fission. It is not suggested that this
is the only, or even the dominant, mechanism (free radical reactions are often more
important), but it is useful to isolate it for study here. Let 4(x) (0 < x < b), be a continuous
distribution of ‘paraffins’ and B(x) (0 < x < b), a similar distribution of ‘olefins’. These
are symbolic species of the form CH,,,, and CH,, respectively and were they to exist they
would certainly be capable of cracking according to the equations

A(x) = A(x") 4+ B(x—1"),|

B(x)—>B(x') +B(x—=x'),] (127)

for all x,x";, 0 <" < «x <b. Denote the concentration densities of A(x) and B(x) by
¢(x,t) and ¢(x,t) respectively. Let the total rate of cracking of 4(x) be x(x) and A(x) be that
of B(x);letv(x’, x) be the fraction of A(x) that cracks to 4(x") and w(x’, x) the fraction of B(x)
that cracks to B(x"). The symmetry of the olefinic reaction implies that

w(x',x) = w(x—x', x). (128)

The fact that v and w are fractions requires that

fmmmehj%wmwzz (129)

0 0

The concentration densities are given by

g(x,n:z-—k(x)cgat)+-f:K(x3z(x,xqc(xgt)dxg (130)

i 8) = =2(2) g, 1) + [ ix(x') o ) ol 1) '+ | :Mx') w(x, x') (', 1) dx'.
(131)

The integrals represent direct cracking from higher species and give a pair of simultaneous
Volterra integro-differential equations. However, the equations are uncoupled and when
the first has been solved we can solve the second as an inhomogeneous equation of the same
type. We shall therefore concentrate our attention on equation (130).

For this purpose we define the operator

b
Ac = —k(x)c(x,t) —I—f k(x") v(x, x") e(x',t) do’, (132)
and supplement the assumptions on « and v by imposing the conditions
@vWW)QJ%%@M:LUM@dﬂm (133)
0

i) 0<glx) <k(x) <M, 0<x<b; g(x)iscontinuouson (0,b); (134)

where D is the rectangle (0, 5) x (0, 5). The first is just a reiteration of equation (129), the
second condition ensures that there are no pockets of material that does not crack.
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We observe first of all that there is no equilibrium distribution, for if there were
k(x) c*(x) would be an eigenfunction of the Volterra equation

99 = [ ol ) (')

which is impossible. The eigenvalue problem associated with the operator 4 is a homo-
geneous Volterra equation b k(x') v(x, ')

o) = [
in the interval (xg, b) if A+« (x) is bounded away from zero. It follows that the eigenvalues of
equation (135) must lie in the set

By =y =—k(x), x<x<0;
for all x, < . Hence all eigenvalues of 4 lie in the set
E= n E,

0<x0<b

B(x') dx’ (135)

and for continuous «(x) the only possible eigenvalue is
A=—«(b). (136)

The operator 4 has in addition a continuous spectrum which coincides with the range of
—«(x) and the solution of equation (130) can be represented as

¢(x, ) =-—§;—ijce”(A——/lI)—lcod/l,

where the contour C encloses the spectrum. To see the behaviour of ¢(x,, ¢) as 00 for any
%y > 0 we need only consider the function ¢(x,¢) in (x,, 4). In this case the range of —«(x)
lies entirely in the left hand plane and the contour C can be taken there also. Thus

¢(%p,t)—>0 as ¢—>o00 forall x,> 0. (137)

This is what we expect on physical grounds and, as the convergence is pointwise and neither
uniform nor in the mean, the conservation of mass is not violated.

In contrast to the reversible case the convergence of the Neumann series of iterated
kernels is assured, but solutions in closed form which were there available for arbitrary
degenerate kernels are here only possible for a degenerate kernel with a single term. The
following example is one in which a closed form is obtained. Let x(x) = &2, v(x, ") = 1/x/,

b =1, then 1
¢(x,t) = —x%(x,1) —|—f x'c(x',t)dx’,  c(x,0) = co(x). (138)
Taking the Laplace transform we obtain
1
(s4-22) 5(x, 5) = ¢4 (%) - [ ¥E(x, ) dr’. (139)
By differentiation with respect to x we have
dc  3x - ()
a;c—l_s—l—ch_s—l—xQ’ (140)
and t(1,$) = ¢o(1) /(1 +),
1 ’ ! ’
whence i(x, ) = 2 () ! ¥eo(v') d (141)

X245 (a2t (24t
46-2
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This holds even when ¢,(x) is not differentiable or even continuous and may be inverted

to give o !

c(x, ) = ¢y(x) e"xzt—i—%e"xztf x'co(x") F(x, %', 8) da’,
x

© 2 2 4’2
where F(x,x',t) = 2t fo (273_—?)2 exp {%_Fxl— t} dz. (142)

20

16

12
t=200

concentration ¢(x, ¢)

08

species index, x

Frcure 4. The concentration distribution by direct cracking: equation (142).

If the initial distribution is originally concentrated entirely at x= 1, ¢,(¥) =8 (x—1), we have
2
¢(x,8) = 8(x—1) e‘xz‘—!—; e~ F(x,1,t),
and shows, in figure 4, a continuous drift toward the zero species.

(d) The differential reactions
The generalization of the discrete sequence reaction 4,—A4,_; = 0 has been mentioned
above. It may be represented by using the generalized function ¢’ (w— x) which, acting on
any test function, gives its derivative. Thus we have symbolically

fboc(w, x) A(x) dx = fbé"(w—x) A(x)dx = A'(w) = 0, (34 bis)

a
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and for the concentration change
b
Ac(x) = f E(w) & (w—x) dw = —E' (). (35 bis)

If we define £(x), the rate of reaction at #, to be

E(x) = k(x) o(x,2) (143)

we have for ¢(x, t) the partial differential equation

c’(x, t) = —[k(x) c(x, t)]l’

de 0 de d .,
or ﬁ_l_ﬁ—x(kc) =%+k(x) —ajc—i-/c (x)e = 0. (144)
This can be solved by the method of characteristics for along a characteristic we have
dx
D kx) (= 1=0),
de ,
G- —k'(x)c (¢ =cy(x,), t =0).
* da’
Thus t= " m (1 45)
defines the characteristic and along it £(¢) ¢(x, £) is constant, i.e.
_ k(%)
c(x,8) = k—(x)‘%(xo)- (146)

If the continuous mixture does not extend beyond a finite range we set £(x) = 0 outside
that range. Thus if a = 0, b finite, £(x) = ef*and ¢y(x) = Cla, 0 < x < & < b we have

% R |
= f e~ A dx =ﬁ(e‘ﬁ"‘o—e‘/”x),

X0

or x=2ln {e=Fro—p}~1.
g

The non-zero concentration thus moves in a band between the curves
ft=1—e P

and ft = e —eFx,

In this region and the open interval (0, b)
¢(x,t) = (Cla) e=P=x0
C e #
T we By (147)

However, because of the discontinuity in k(x) at ¥ = b we have £'(x) = fef*—eft §(x—1b),
thus at x = b there is built up a delta function distribution

et §(x—b) f:c(b, t)dt = &%3@__1)) In [e%l%@]
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380 R. ARIS AND G. R. GAVALAS

for (1/f) (e=*f —e=~*) <t < (1)f) (1—e~#¥). After this latter time the distribution is C8 (x— ).
A more versatile generalization of the sequential reaction, based on the notion of a bio-
chemical sequence with Michaelis—Menten kinetics, would be obtained with

E(x) = k(x) o(x, 1) {1 +m(x) e(x, 1)} = F(x, ). (148)
This also leads to an equation amenable to solution by the method of characteristics

de (0F\ d¢ OF
% (ac) wtam =0 (149)

Here however the characteristic equations

dv oF d¢  OF
dt T G’ dt T o«

call for simultaneous integration.
Another system leading to a partial differential equation is 4’(x) —f(x) B(x) = 0, the
generalization of 4, ,,—4,—f,B, = 0. In this case we may set

E(x) = k(x) b(x,t) e(x, 1), (150)

where b(x, t) the concentration density of B(x) changes by irreversible incorporation and so

t
b(x,t) = by(x) — () f c(x,0') dt'. (151)
0
If we introduce the new independent variable
D(x, 1) = f Lo(x, ) d¥ (152)
0
we obtain the nonlinear hyperbolic equation
2r A, ol oral .
Ty =y =y 5 = 0, (153)
where k(%) = k(x) bo(x), 7(%) = k(x) f(x),
and I'(x,0) =0, I,(x,0)=cy(x).
The sequence of reversible first order reactions
kr—1,1 kr,1
A A A

has the equations

¢y —kr+1 2011 (k1,2+kr, 1) cr+kr—l,lcr—l
= (kr+1, 2cr+1“2/fr, 2€r+kr—1, 26 1)+ (kr, Z_kr, 1) 6— (kr—-l, 2—k7'~l, 1) 61

The generalization of this to a continuous mixture is the second order parabolic partial
differential equation P 2

PN gz(k )'I“g (ky—Fky) e (154)
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THEORY OF REACTIONS IN CONTINUOUS MIXTURES 381
We observe that this has an equilibrium distribution ¢*(x) for which d¢/dt = 0, satisfying
02 J
T2 (ky0) ‘l‘gc' (ky—ki)e =0,
. J
ie. %kzc—l— (ky—k,) ¢ = constant.

Now by the principle of microscopic reversibility we would have in the discrete system
kr,lcr = kr+l,2€r+l or (kr+1,26r+l_kr,26r) + (kr,Z_kr, 1) 6, = 0.
In the continuous analogue this is

J
o (kyc) + (kg—k;) ¢ = 0,

so that the constant is zero and

¢*(0) k,(0) f" {kl(x') } :
c¥(x) = — L2 T ex Tt —T11dx’. : 155
W=k P k) 19)
Solution of equation (154) by the Laplace transform leads to the linear equation
d? d

daz (0) ‘i‘@ (ky—ky) ¢ —st = co(x).

It may be interpreted as a heat conduction problem in an inhomogeneous medium with
heat generation.
(¢) Polymerization
There is little need to say much on the subject of polymerization, since this has been
well treated by Amundson and his co-workers (Amundson & Liu 1961 and particularly
Amundson & Zeman 1963, 1965). However, it is of interest to cast it into the mould that
has been formed here and to exhibit a solution for a simple case. The simplest model for
addition polymerization is that of an initiation reaction, M, - P,, in which the monomer is
activated (with rate constant %;), followed by a propagation reaction, M,+P,—P,,,, by
which the active polymer grows (rate contant£,) and a termination reaction M, +F, M, , ,
by which dead polymer is formed (rate constant %,). If the rate constants are independent
of length, this leads to the following kinetic equations:

dm © d
87] = —k,my—(k,+-k)m, 2 p,s »(%:kiml_(kﬁ+ki)m1pl’

! (156)
dp, dim

_d—t :kpml<pn—l_pn)_klm1pn (n:2> 39‘“), _ﬁ:ktmlpn—l (n= 29 3:"')’

Let us consider that there are two species M, and P, and two continuous mixtures M (x),
P(x), x > 1. Then the third and fourth of the above equations can be approximated by
partial differential equations for p(x, t) and m(x, ¢), namely

opjot = —kymy 2

g;c_ktmlp}

, (157)
om ot = km, (p—gg) .
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These partial differential equations have to be solved in the region x > 1, ¢ > 0 with the
boundary conditions p(1,t) = p,(¢), m(1,¢) = my(t), p(x, 0) = m(x,0) = 0. It is convenient
to transform these to linear equations by taking

r= [ hm@yar, o) =p©+[ podr (158)
0 1
and putting Ky=kylky, K=Kk, k= k,[k,. (159)
Also we take p,(0) = 0, m,(0) = 1, by normalization of concentrations, then
dm d
“d;‘l =—{1+ (sz"i‘Kt) (@—p1)} -c% =1- (Kp +K,) b1
J d 0 J (160)
B W, dm_ o
iy T D G = TR T
By integrating the equation for p(x,7) from 1 toco
d £ @
3 | e dr ==k [ bl ds
and adding the equation for p,, we have
do/d7 = 1 —k,®. (161)
The equations for p, and @ can be integrated immediately to give
= {1 (k) (162)
@ = {l—e™7}/k,. (163)
The equation for m; may be integrated by quadratures and the relation between ¢ and 7 is
given by e [ dr’
' o dmy (')

To obtain p(x,7) we integrate along the characteristic paths 7 = 7+ (x—1) /«, to give

D7) = fetin—e 1=t} (o, 4 ) (1< x < 1+k,7),

=0 (x>1+«,7), (164)
and m(x,7) = (1[x) e @ Vx (1 <x < 144k,7),
=0 (x> 1+k,7). (165)

The method may be adapted to the case when rate constants depend on the polymer
length without difficulty. Since this and other cases have been well treated by Amundson
& Zeman (1963), we need not pursue them further here.

6. REAGTIONS UNDER NONISOTHERMAL CONDITIONS
The solutions obtained so far have been for isothermal conditions the only variables
being the concentration distributions. We have, however, mentioned the temperature
variation that would ensue from adiabatic reaction

- rAc{j L tw) du, (75 bis)

4
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which would give an equation for temperature to be solved simultaneously with equation
(68) or equation (69). However, since r(w) = dé(w)/d¢ we have for adiabatic reaction

7=Tot [ 5 ) du,
c §4

Substituted in equation (68), or (69), this no longer requires the simultaneous solution of an
ordinary differential equation, but certainly introduces an additional element of non-
linearity.

If the temperature is specified as a function of time then the reaction rate will become
an explicit function of time and the equations no longer autonomous. A problem of con-
siderable interest is the determination of a temperature programme or history which is in
some sense optimal. We shall not attempt this in any great generality, but will obtain
a maximum principle for the cracking equations.

(a) The optimal temperature variation in the cracking reaction
For the cracking reaction we have the integro-differential equation

é(x,8) = —x(x) c(x, 1) —l—fbK(x') v(x,x") e(x,t) da’, (130 bus)

with ¢(x,0) = cy(x)

and certain conditions, (133), on the cracking pattern, v(x,x"). If we assume that the
cracking pattern is independent of temperature 7, but that the rate distribution function
k(x) is k(x, T'), then we may ask for the optimal temperature programme, 7'(¢), which
maximizes the functional

G(0;T) = fbg(x)c(x, 0) dx (166)

of the final state ¢(x, f) at time ¢ = 0.
Let us denote ¢(x,¢) as a functional of T'(¢) by F(x,t; T'(¢)) and the functional derivative
of F with respect to T at t = s by

Fr(x,t; Tss) = h(x,t,5).
Then the functional derivative of G is
b
Go(0; Tss) = f 2(x) h(x, 0, 5) dx. (167)
0

Now if f(x, T'(t)) denotes the right hand side of equation (130) and f; its partial derivative
with respect to 7, then functional differentiation of this equation with respect to 7 gives

.

(%, t,8) = —x(x, T()) h(x,t,5)+ f kg, T(0)) o(,9) (3 1,5 dy+fr(x, T(2)) 3(5—-'5),} (168)
h(x,0,s) = 0.

Consider now the adjoint function #(x, ¢, f) satisfying

i = (e 7)) [16,.0) = [ (9,0 2(9,1,0) dy],}

7](%, 0, ‘9) = g(x>
47 Vor. 260. A,

(169)
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By rearrangement of the integrals we see that

Go(0; T s) = f " 0(x,0,0) h(x, 0, ) d
b 0 .
— fﬂ dx fo de(ih+hy)
= [ 15,001, T(9) (170)

Now if G(0; T') is truly a maximum for 7' = T then
G(0; T+ A1) —G(0; T) <0

for an arbitrary function 7 and sufficiently small A. If T lies entirely within the permitted
domain of temperature this implies that G.(0; T;s) = 0 for all 5, 0 < s < 6. But more
generally if the permitted domain of temperature is a convex set, so that when 7" and
T+7 belong to it so do all the functions 7417, 0 <A< 1, then, by an application of
equation (42),

. 0 1
GO; T+1)—G(0; T) = f 7(s) dsf Go(0; T+ A735) dA < 0.
0 0
If now 7(s) is zero outside the interval (t—4, £+ 48) and is a constant ¢ in this interval we have

1 t+4
cf a [ G Ty ) A <o,

0 t—4

If G7 is continuous this implies that for sufficiently small ¢
1 —
cf Go(0; T4-Ar38) dA < 0.
0

But by introducing equation (170) for G’ and performing the integration with respect to A
we have

[ 68,0 70, T +0)~/ 5, T} dx <0

In other words T is such that it maximizes the Hamiltonian

[ .00, 700 am)

at every point of the path. The Hamiltonian may be written

fZ’?(x, t,0) {——K(x, T)c(x,t) +fj/<(x’, T)v(x,x") c(x',t) dx’} dx,

and the necessary condition that it should be maximized at each point is analogous to the
maximum principle of Pontryagin for simultaneous differential equations. The solution of
equations (130), (169) and (171) is clearly a matter of considerable difficulty. Probably it
is best to try an iterative technique assuming a temperature history and integrating (130)
from 0 to # and (169) from 0 to 0 and then readjusting the temperature to maximize the
Hamiltonian. Methods of this sort have proved successful with other forms of Pontryagin’s
principle.


http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THEORY OF REACTIONS IN CONTINUOUS MIXTURES 385

(b) Transient behaviour in a stirred tank

The equation given above, (74), for the stirred tank must be augmented by a heat
balance equation if the non-isothermal behaviour of the system is to be discussed. Thus we
have the equations

0c(x,t) = cp(x) —c(x, t)+0fdoc(w, x)r(w, e, T') dw, (74 bis)

0T (t) = T,— T(t) +0 J * Jw) r(w, e, T) dw—Q, (172)

where J(w) = —AH(w)/C,, @ is proportional to the rate of removal of heat and 0 is the
holding time of the reactor. To obtain the complete behaviour of the reactor these equations
have to be integrated starting from the initial conditions

e(x,0) = (), T(0) =T, (173)

The equation for the concentration distribution can be written in terms of extents of
reaction. Let

¢(x,1) = cp(x) —l—fjoc(x, w) E(w, t) dw+{co(x) — ¢, ()} {(2), (174)

then the initial condition is {(w, 0) = 0, {(0) = 1. If the initial and feed compositions are
related by d
eo(x) = () + [l ) £y () dw, (175)

then we can let £(w, 0) = £,(w) and set {(¢) = 0, but this is a special circumstance that may
not obtain. Substituting (174) into equation (74) we have

[, 0) 108 00, 0)+ 80, 8) — 071, £, &, T do-+-ey(w) =, (0} 04+ ] = 0.

Now since the reactions are independent there is no nontrivial function v(w) such that
[a(x, w) v(w) dw = 0, and if, in addition, no relation such as equation (175) exists then we

must have 0 (10, £) = —E(w, £) + Or (w0, £, ¢, T) (176)
and 0 =—¢. (177)
The solution to the second of these equations is immediate, namely

() =elt (178)

and shows that the initial incompatibility of composition is merely ‘washed out’ of the
reactor in the same way as a non-reacting substance. If the feed composition were variable
in time, ¢, = ¢;(x,¢), it would probably be better to work with the equation for ¢(x, t) rather
than that for £(w, ).

Whilst the solution of equations (172) and (176) calls for numerical work immediately,
something may be said about the stability of the reactor. The steady state distribution,
¢,(x), and temperature, 7}, are given by

e.(9) = )+ [ al, )& ) o, (179)

47-2
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£ (1) —0r(w,€,(w), T}) = 0, (180)
T T,40 [ () 1w, E(0), ;) dw—Q, = . (181)
Let Ew, ) = E,(@) + (w0, T(E) = TAx(0), (182)

then linearizing equations (172) and (176) we have

0w, ) =~ (0, 0)+0 [ Y, 1) 140, E, T3 0) Q'+ 0p(0) g, E,T), (183)

d d d
01(0) = 0 [ dw [ dw' T(w) ryw, €, T30y (', )~ 14 Qi—0 [ Jw) 12,6, T) |,

c (4 c (184)
where @Q; is the partial derivative of @ with respect to temperature evaluated at steady state.
The condition for the asymptotic stability of the steady state is therefore that the spectrum
of eigenvalues of the operators in equations (183) and (184) lies in the left hand plane.
A necessary, but insufficient, condition for stability can be obtained from the steady state

equations. If (180) is treated as a nonlinear integral equation for £ (w) as a function of 7,
and its solution substituted in (181), the latter may be written

d d
=Ty Q, =0 [ Jw)r(w,,,T), T) dw = [ Jw) &(w, T) du,

of which the left hand side represents the heat removal rate and is often linear in 7}, and
the right hand side the rate of heat generation. A sufficient condition for instability is that
the slope of the heat generation curve should be greater than that of the heat removal curve.
Denoting the partial derivative of § (w) with respect to 7, by &;(w, T) this gives the condition

a
[T gw,T) dw>1+¢.
But by differentiating equation (180) with respect to 7, we have an equation for £ (w, T;),
namely d
&, T)—0 [ 14w, £, T50) 6w, T) = b1, €, T).

If only discrete reactions are involved, the conditions reduce to those for simultaneous
reactions; see, for example, Amundson & Aris (1958). Finally we should notice that since
7 is primarily a function of ¢ and ¢ of £, the formula (40) has to be used in evaluating

b
re(w, & Tyw") = | ri(w,c, T;4") ci(x', T;w') da’
£ £

b
= [[ritw,e, T50) aw', ) (185)

7. DETERMINATION OF KINETICS

We must not close without some reference to the determination of kinetic kernels. As
always this needs to be informed by a proper understanding of the chemistry of the situation
for the mathematician can only contribute a method and random attempts to fit unsuitable
functions are inevitably futile. We shall outline two methods and illustrate one of them.
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(a) Application of the functional gradient
The equation for the cracking reaction is

¢(x, £) = —k(x) c(x, ) + fj"(x') v(x, x") c(+', £) dx"} (186)
¢(x,0) = co(x).

Suppose that experimental data is given in the form of an observed function z(x,¢),
0 < ¢ < 0, with z(x, 0) = ¢(x). We wish to determine the functions «(x) and v(x, x) to give
the best fit in the sense of minimizing the functional

Flx,0) = f f [o(x, ¢) —z(x, £)]2dx ds. (187)
Fis functionally dependent on ¢(x, ¢) by equation (187) and ¢(x, ¢) is dependent on «(x) and
v(x,x") through equation (186). For convenience we denote the latter dependence by

c(x,8) = G(k,v;x,t) (188)
and the functional derivatives by

Gk, 032, 858) = g%, 56), |

189
Guli 033 568) = Y 668).) s
A necessary condition for the minimization of F is the vanishing of the gradients

0 (b

Fllo038) =2 [ [ o) =201 6, 156) dxde = o, (190)
0Jo
o b

Fiesbe) =2 [ el 20,0190 68 dxde = o. (191)
0Jo

The gradients ¢ and ¥ satisfy equations obtained by functionally differentiating equation
(186) ; this gives

$(x,1;€) = —3(E—x) e(x,1) —k(x) P(x,8;§) +H(E—x) v(x, &) ¢(&, )
+ f K)ol ) g 5O A, (192)
P(x,68,8) = —x(x) Y(x, 85 6,8) +H(E —x) §(E—x) k(§") ¢(&', ¢)
+f iK(x’) o x) Y, EE) A, (193)

with ¢(x: O;g) =0, %(x> O;g: gl) = 0. (194)

The function H(x) is the Heaviside step function (the integral of the delta function),
H(x) = 0, x < 0 and H(x) = 1, x > 0. The set of equations (186), (190) to (194), must be
solved simultaneously for the functions ¢(x,¢),«(x),v(x,x"), ¢(x,¢;&), ¥(x, ;€ &). This is
clearly a formidable task and would require the refinement of an initial guess of x and v by
an iterative technique.

47-3
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(b) Approximation by degenerate kernels
Suppose that the kernel in equation (186) can be approximated by a finite sum
v(x, &) = 2a;(x) b;(x"). (195)

We consider that no hydrocarbons with less than two carbon atoms are formed and hence
that the lower bound of x is 2. Then the condition corresponding to equation (133) is

j ’:v(x, ¥) dx = Sh(x') f 2 a(x)dx = 1, (196)

which may be satisfied by
% -1
b(x") =¢ {f a;(x) dx} , 26 =1.
2

Inspection of the data given below suggests trying g;(x) = x!~%. The data in table 2 is taken
from Fabuss et al. (1962), who considered the rapid cracking of n-hexadecane. The accuracy
probably does not justify more than two terms and we therefore consider a kernel

104 l—«

v #) = ¥ —2  xIn Ix

(197)

where, in order to ensure that v is positive, 0 < « < 1-42. Following the suggestion of Voge
& Good (1949) we take «(x) proportional to (x—1) (1-57x—3-9) and absorb the constant
of proportionality into the time to give

16 (4 . ' 9.
é(x,t) = — (x—1) (1'57x—3'9)c(x,t)—}—ocf (¥ —1) ;137; 3-9)

c(x'yt) dx’

+

1_“f16 (¥ —1) (1~57x'—3'9)6(x', £)ds’.  (198)

X Ja In 1x’

This equation was solved numerically on an IBM 7094 computer. The interval

2 < x < 16 was divided into 56 parts and Simpson’s rule used for the integrals. An Adams—
Moulton predictor-corrector formula was used for the integration in the time direction
with a step of At = 0-04. To approximate the initial condition of pure hexadecane, the

initial condition was taken
200x—3000 (15 < x < 16),
0 (2 <x<15).

co(x) = {

No stability problems were encountered and some results are shown in figure 5.
To calculate the best value of «, the weighted sum of squares

13
Q= 3 [e(s,0) ~ () (199)
xi+4
was minimized. Here ¢(x;) is the data, for which x;, = 4 is lacking, and A the molecular
weight, 14x,42. The value of ¢ was chosen to give the same total fraction cracked. @ was
computed for « = 0(0-2)1-4, but, being found insensitive to «, the minimizing value was
not refined beyond « = 0-6.
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The results are shown in table 2 and it is clear that, whilst the trend is reasonable, the fit
is far from good; one case is shown in figure 6. The inaccuracy of the data makes it difficult
to decide how adequate the linear equations are at high conversions. The kernel with

12

concentration ¢(x, t)

species index, x

Ficure 5. Concentration distribution for cracking of hexadecane using the kernel (197).

28
24|
~ 20F
T
S
S 16
s |
g 12k
[=]
8 -
3 calculated
4—.
0 1 T | R—T

species index, x

Ficure 6. Comparison of experimental distribution with that calculated for
the second run in table 2.

a; = x7! and a, = x~2 was also tried and found inferior, so that a three-term kernel with
a; = x'~*is not likely to be an improvement on (197). To account for the secondary maxi-
mum in the neighbourhood of x, = 6 a much more elaborate kernel would seem to be
needed.
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TABLE 2. EXPERIMENTAL AND CALCULATED RESULTS FOR HEXADECANE CRACKING

temperature (°C) ... 610 593-3 610 610
fraction cracked ... 0-276 0-296 0-510 0-688
time, ¢ 0-32 0:35 0-71 1-16

A Al r A R r A R 'S A N

moles per 100 moles
of G, gHj;, cracked expt. calc. expt. calc. expt. calc. expt. calc.

C,H, 141 1864 277 1872 267 1978 564 2105
C,H, 104 1347 198 13-52  16-9 1429 298 1520
C,H,, — 108 — 1088  — 1145 — 1212
C,H,, 67 923 81 926 63 968 77 1015
CoH,, 74 813 94 815 72 843 80 874
C,H,, 80 782 95 784 75 749 58 7-63
CoH, 4 63 669 71 669 58 673 42 672
CoH,, 50 617 57 616 32 609 31 595
CoHy, 46 574 51 572 38 553 24 527
C,H,, 36 536 52 534 32 504 22 467
C,Hy, 3-3 503 39 500 27 460 20 413
CysH,y, 2:6 473 32 469 13 420 16 364
C,,Hy — 445  — 440  — 388  — 3-21
C,H — 420  — VR T — 349  — 2-81

—
o
w
%)

(¢) Least squares estimation of parameters

The general problem of fitting the best values of a set of parameters in a kernel of given
form may be formulated as follows. Let us consider the general reaction governed by the
equation J

) = [ o, ) (e, 050381 0) (200)
c
wherefy, ..., f, are a set of adjustable parameters in a reaction rate expression of given form.
Let us further suppose that the only quantities that can be measured are certain linear
functionals of the concentration distribution at certain instants, i.e. the quantities

z; = f: hi(x) ¢(x,t;) dx (201)

can be measured. Suppose these observations are a set of numbers §; (j = 1,2, ...,n> p),
then we may estimate the parameters £, ..., §, by choosing them so that the sum of squares

Q=3 (z-4) (202)

is minimum. The method to use is clearly a hill-climbing technique in which, starting from
some initial guess at the f’s, the p estimated values are successively adjusted to reach the
minimum of Q. Quite sophisticated techniques are available for this; see, for example,the
text and references in Rosenbrock & Storey (1966), whose approach to the estimation
problem we follow here. A best set of parameters, £, ...,/)3,, may always be found, but it
does not follow that this set has any real meaning. As always the function r needs to be
informed by a knowledge of the chemistry of the situation. Moreover there is no guarantee
that the set of parameters so found is unique and even if unique the values of the £; may be
very sensitive due to the suppression of information implicit in equation (201). It follows
that with every estimate of the £ one should associate an estimate of reliability.
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We shall assume that the estimates §; of the parameters are close enough to the true
values £ that wholesale linearization of the equations is permissible. If the parameter values

b = B:+5i (203)
lead to a solution c(x,8) =T(x,8)+¢" (%, 1) (204)

differing only by ¢ (#, ¢) from the solution ¢(x, ¢) obtained with the values f;, then linearization

s #t) = | * a(w, %) [ | " D@ wu) ¢ (1, 8) det § Wz, w) /9;] du, (205)

=1

where ®(¢;w;u) is the functional derivative of r with respect to ¢ evaluated on ¢ = ¢ and ¥
the partial derivative of r with respect to f,. If we may interchange the order of integration
we have '

¢(5,0) = [ Do) ¢ ) dut $ T (206)
where D(x,u) = fdoc(w, x) D(c;w;u) dw, (207)
() = [ alu, ) W5 ) du, (208)

the overbar being a reminder of the functional dependence on ¢. The linear system (206)
allows us to use the adjoint equation to show the effect of §; on the observed quantities z;.
Let y;(, t) satisfy the equation

70,8) =~ [ 7,0, Bl ) du (209)
Then V(% 4;) = hy(x). (210)
E%f fb ¢'(x,8) y;(x,t) dx = jb 7;(%,7) dx jb O(x,u) ¢’ (u, t) du
+ 5 [l B e [ s [ Bl ) 00)

and by integrating from ¢ = 0 to ¢ = #; we have

, b. , Sh . R T
g = [ b ey de= 3T o (o)
— G b _
where T, = f dt f 7,0, £) T () da. o (212)
0 a )

The T; are thus the partial derivatives of z; with respect to f; and may be calculated from
solutions of the adjoint equations.
Now let us suppose that the observations {; differ from

z, = f " by () 2, 1)

by an error #; so that z;—{; = Z;+z—Z;—n; = zj—1;.
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Then

to the first order in small quantities. If the value of @ is minimum, these derivatives will
be zero and we have a relation between the small variations in the £ and the observational
inaccuracy,

[ —
S (31T pi= 3 T (213)
= \iS1 =1
If the matrix T*T is nonsingular we may write this in an obvious matrix notation as

B’ = (T*T)-1I*y. (214)

Now if the errors v are random Gaussian deviates with zero mean and covariance matrix
E(nn*) =M, (215)

then within the range of linearity the covariance matrix of the parameter estimates is
E@'g'*) = P = (T*F) -1 P*MF(T*F) -, (216)

In particular the variance of the estimate of §, is ¢? = P,;, and at a 95 %, confidence level

B,—1-960, < f, < B,+1-960;. (217)

In obtaining equation (211) we have assumed that ¢(x,0) is known perfectly, so that
¢'(x,0) = 0. If there is an error in the initial observation of composition this will transmit
a contribution of

f ’ 7;(%,0) ¢’ (x,0) dx

to z; and this must be allowed for in the subsequent calculation. Since we have allowed for
the %;(x) being different there is no greater generality in introducing a diagonal matrix of
weighting factors. The more general case of minimizing

Q=3 3Wi5-8) (-0,

Il M§

where the weights I, are elements of a positive definite matrix, can be treated exactly
as above.

We are indebted to the Numerical Analysis Center of the University of Minnesota for
free use of the computer, to the John P.Fridley Fund for fellowship support, and to the
Division of Chemistry and Chemical Engineering of the California Institute of Technology
for financing part of the computations.
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